ТехИнфо

Технологическая   информация

Химико-термическая обработка


Химико-термической обработкой (ХТО) называется термическая обработка, заключающаяся в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.

При химико-термической обработке происходит поверхностное насыщение стали соответствующим элементом (С, N, Al, Cr, Si и др.) путем его диффузии в атомарном состоянии из внешней среды (твердой, газовой, паровой, жидкой) при высокой температуре.

Цементация стали

Цементацией (науглероживанием) называется химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали углеродом при нагревании в соответствующей среде — карбюризаторе. Как правило, цементацию проводят при температурах выше точки Ас3 (930—950 °С), когда устойчив аустенит, растворяющий углерод в больших количествах.

Окончательные свойства цементованные изделия приобретают в результате закалки и низкого отпуска, выполняемых после цементации.

Назначение цементации и последующей термической обработки — придать поверхностному слою высокую твердость и износостойкость, повысить предел контактной выносливости и предел выносливости при изгибе и кручении.

Для цементации обычно используют низкоуглеродистые (0,1 — 0,18 % С), чаще легированные, стали. Для цементации крупногабаритных деталей применяют стали с более высоким содержанием углерода (0,2—0,3 %). Выбор таких сталей необходим для того, чтобы сердцевина изделия, не насыщающаяся углеродом при цементации, сохраняла высокую вязкость после закалки.

На цементацию детали поступают после механической обработки с припуском на шлифование (50—100 мкм). Во многих случаях цементации подвергается только часть детали; тогда участки, не подлежащие упрочнению, защищают тонким слоем меди (20—40 мкм), которую наносят электрическим способом или изолируют специальными обмазками, состоящими из смеси огнеупорной глины, песка и асбеста, замешанных на жидком стекле, ленитом и др.

Азотация

Азотацией называют процесс диффузионного насыщения поверхностного слоя стали азотом при нагреве ее до 500—650 °С н аммиаке. Азотирование повышает твердость поверхностного слоя детали, его износостойкость, предел выносливости и сопротивление коррозии в атмосфере, воде, паре и т. д. Твердость азотированного слоя стали выше, чем цементованного и сохраняется при нагреве до высоких температур (450—550 °С), тогда как твердость цементованного слоя имеющего мартенситную структуру, сохраняется только до 200—225 °С.

Технологический процесс предусматривает несколько операций, приведенных ниже.

1. Предварительная термическая обработка заготовки. Эта операция состоит из закалки и высокого отпуска стали для получения повышенной прочности и вязкости в сердцевине изделия. Отпуск проводят при высокой температуре 600—675 С, превышающей максимальную температуру последующего азотирования и обеспечивающей получение твердости, при которой сталь можно обрабатывать резанием.

2. Механическая обработка деталей, а также шлифование, которое придает окончательные размеры детали.

3. Защита участков, не подлежащих азотированию, нанесением тонкого слоя (10—15 мкм) олова электролитическим методом или жидкого стекла. Олово при температуре азотирования расплавляется на поверхности стали в виде тонкой не проницаемой для азота пленки.

4. Азотирование.

5. Окончательное шлифование или доводка изделия.

Нитроцементация

Нитроцементацией называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при 840—860 °С в газовой среде, состоящей из науглероживающего газа и аммиака. Продолжительность процесса 4—10 ч. Основное назначение нитроцементации — повышение твердости и износостойкости стальных деталей.

После нитроцементации следует закалка непосредственно из печи, реже после повторного нагрева, применяют и ступенчатую закалку. После закалки проводят отпуск при 160—180 °С.

При оптимальных условиях насыщения структура нитроцементо ванного слоя должна состоять из мелкокристаллического мартенсита, небольшого количества мелких равномерно распределенных карбо-нитридов и 25—30 % остаточного аустенита.

Толщина нитроцементованного слоя составляет обычно 200— 800 мкм. Она не должна превышать 1000 мкм. При большей толщине в нем образуется темная составляющая и другие дефекты, снижающие механические свойства стали.

Нитроцементации обычно подвергают детали сложной конфигурации, склонные к короблению. Нитроцементация имеет следующие преимущества по сравнению с газовой цементацией. Процесс происходит при более низкой температуре (840—860 °С вместо 910— 930 °С): толщина слоя меньше; получаются меньшие деформации и коробление деталей; повышается сопротивление износу и коррозии.

Цианирование

Цианированием называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при температуре 820—950 "С в расплавленных солях, содержащих группу CN.

При среднетемпературном цианировании детали нагревают до 820—860 С в расплавленных солях, содержащих NaCN. Для получения слоя небольшой толщины (150—350 мкм) процесс ведут при 820—860 °С в ваннах (20—25% NaCN, 25—50 % NaCl и 25—50 % Na2C03). Продолжительность процесса обусловлена требуемой толщиной слоя и составляет от 30 до 90 мин.

Закалку выполняют непосредственно из цианистой ванны. После закалки следует низкотемпературный отпуск (180—200 °С) Твердость циаиированного слоя после термической обработки HRC 58—62. Цианированный слои по сравнению с цементованным обладает более высокой износостойкостью и эффективно повышает предел выносливости. Этот вид цианирования применяют для упрочнения мелких деталей.

Строение цианированного слоя аналогично цементованному. После высокотемпературного цианирования детали охлаждают на воздухе, а затем для измельчения зерна закаливают с нагревом в соляной ванне или печи и подвергают низкотемпературному отпуску.

Процесс цианирования по сравнению с процессом цементации требует меньшего времени для получения слоя заданной толщины, характеризуется значительно меньшими деформациями и короблением деталей сложной формы и более высокими сопротивлениями износу и коррозии.

Недостатком цианирования является высокая стоимость, ядовитость цианистых солей и необходимость в связи с этим принятия специальных мер по охране труда.

Борирование

Борированием называется химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали бором при нагревании в соответствующей среде.

Борированный слой обладает высокой твердостью HV 1800—2000 (18 000—20 000 МПа), износостойкостью (главным образом, абразивной), коррозионной стойкостью, окалиностойкостью (до 800 °С и теплостойкостью. Борирование применяют для повышения износостойкости втулок грязевых нефтяных насосов, дисков пяты турбобура, вытяжных, гибочных и формовочных штампов, деталей пресс-форм и машин для литья под давлением. Стойкость указанных деталей после борирования возрастает в 2—10 раз.

Силицирование

Насыщение поверхности стали кремнием называют силицированием. Силицирование придает стали высокую коррозионную стойкость в морской воде, в азотной, серной и соляной кислотах и несколько увеличивает устойчивость против износа.

Силицированный слой отличается повышенной пористостью, толщина его 300-1000 мкм. Несмотря на низкую твердость HV 200—300 (2000—3000 МПа), силицированный слой обладает высокой износостойкостью после предварительной пропитки маслом при 170-200 °С.

Силицированию подвергают детали, используемые в оборудовании химической бумажной и нефтяной промышленности. Силицирование широко применяеся для сопротивления окислению при высоких температурах сплавов молибдена.

Диффузионное насыщение металлами

Поверхностное насыщение стали алюминием, хромом, цинком и другими элементами называют диффузионным насыщением металлами. Изделие, поверхность которого обогащена этими элементами, приобретает ценные свойства, к числу которых относятся высокая жаростойкость, коррозионная стойкость, повышенная износостойкость и твердость.

В зависимости от метода переноса диффузионного элемента на насыщаемую поверхность различают следующие основные способы диффузионной металлизации: 1) погружение в расплавленный металл, если диффундирующий элемент имеет низкую температуру плавления (например, алюминий, цинк): 2) насыщение из расплавленных солей, содержащих диффундирующий элемент (с электролизом и без электролиза); 3) насыщение из сублимированной фазы путем испарения диффундирующего элемента; 4) насыщение из газовой фазы (контактным и неконтактным методом), состоящей из галогенных соединений диффундирующего элемента.

Хромирование - насыщение поверхности стальных изделии хромом. Этот процесс обеспечивает повышенную устойчивость стали против газовой коррозии (окалиностойкость) - до 800 °С, высокую коррозионную стойкость в таких средах, как вода морская вода и азотная кислота. Хромирование сталей, содержащих свыше 0,3—0,4% С повышает также твердость и износостойкость.

Хромирование используют для деталей паросилового оборудования, пароводяной арматуры, клапанов, вентилей, патрубков, а также деталей, работающих на износ в агрессивных средах.

Диффузионное цинкование — процесс, заключающийся в насыщении поверхности стали цинком при температурах 300—500 и 700— 1000 °С в расплавленном цинке, порошке или в парах цинка.

Цинкование применяют для повышения коррозионной стойкости стали в атмосфере, бензине, маслах и горячих газах (300—500 °С), содержащих сероводород. Цинковое покрытие нестойко в кислотах и щелочах.

Для повышения коррозионной стойкости различных полуфабрикатов и деталей (листы, трубы, проволока, посуда, аппаратура для получения спиртов, холодильников, газовых компрессоров и т. д.) применяют цинкование путем погружения изделий в расплав цинка.


Наименование процесса Виды процессов по применяемой среде Характеристика процесса Назаначение
Цементация 1) Твёрдым карбюризатором; 2) жидкостная; 3) электролизом; 4) газовая Насыщение поверхностного слоя углеродом Повышение износоустойчивости, поверхностной твёрдости и предела усталости стальных деталей
Азотирование 1) Газовое; 2) жидкостное Насыщение поверхностного слоя азотом Повышение износоустойчивости, поверхностной твёрдости, предела усталости и коррозиеустойчивости стальных деталей
Цианирование 1) В твёрдой среде; 2) жидкостное; 3) газовое Насыщение поверхностного слоя углеродом и азотом Повышение износоустойчивости, поверхностной твёрдости и предела усталости деталей из конструкционной стали. Повышение режущих свойств и стойкости инструментов
Алитирование 1) В твёрдой среде; 2) газовое; 3) жидкостное; 4) электролитическое Насыщение поверхностного слоя алюминием Повышение жароупорности стальных деталей
Хромирование (термодиффузионное) 1) В твёрдой среде; 2) жидкостное; 3) газовое Насыщение поверхностного слоя хромом Повышение износоустойчивости и поверхностной твёрдости деталей машин и механизмов. Повышение режущих свойств и коррозиеустойчивости инструментов
Силицирование 1) В твёрдой среде с пропусканием газообразного хлора; 2) газовое Насыщение поверхностного слоя кремнием Повышение жароупорности, износоустойчивости и коррозиеустойчивости стальных деталей
Борированве 1) В твёрдой среде 2) в расплавленной буре при её электролизе Насыщение поверхностного слоя бором Повышение твёрдости, коррозиеустойчивости и кислотоупорности стальных деталей
Хромосилицироваиие Газовое Одновременное насыщение поверхностного слоя хромом и кремнием Приобретение комплекса свойств, присущих хромированному и силицированному слоям, главным образом жароупорности
Хромоалитирование Газовое Одновременное насыщение поверхностного слоя хромом и алюминием Повышение жароупорности

Содержание раздела:


Виды термической обработки

Химико-термическая обработка

Термо-механическая обработка

Дефекты термической обработки и основные меры борьбы с ними

Современные виды термической обработки

Статьи по теме

Статьи по теме:


Окисление и обезуглероживание стали

При нагреве стали до высоких температур под действием кислорода и других окислительных газов (СО2, Н2О, SО2), находящихся в атмосфере печи, происходит окисление и, обезуглероживание поверхностных слоев деталей. Окисление и обезуглероживание стальных изделий происходит при нагреве их в пламенных и электрических печах различного типа и в соляных ваннах. Величина окисления и обезуглероживания зависит от вида топлива, конструкции печи, от состава и давления атмосферы печи, температуры, времени нагрева, химического состава стали и других факторов ...

Закаливаемость и прокаливаемость стали

Закаливаемость — способность стали получать высокую твердость при закалке, что обеспечивается получением структуры мартенсита. Закаливаемость измеряется в единицах твердости и зависит, главным образом, от содержания углерода ...